
2

Summary

This application note provides a basic overview of the ABEL language and gives examples showing how to use ABEL to fully
utilize the specific features of Xilinx CPLDs.

Xilinx Families

XC9500, XC7300

Introduction
ABEL (Advanced Boolean Expression Language), com-
bined with the Xilinx fitter software, provides a complete
behavioral development environment for entering, simulat-
ing, and implementing designs for Xilinx CPLDs. And,
because ABEL was developed specifically for programma-
ble logic devices, it provides several important features that
support the Xilinx CPLD architecture.

ABEL Language Structure
ABEL designs are organized into modules. Each module
contains at least one set of declarations, logic descriptions,
and an optional set of test vectors. Most designs are com-
pletely specified in a single module. However, using the
hierarchal feature found in ABEL 6, multi-module designs
can also be specified. Figure 1 shows the distinct sections
of code that are necessary to completely specify a design.

Figure 1: ABEL Module Structure

Using ABEL with Xilinx CPLDs

XAPP075 January, 1997 (Version 1.0) Application Note

MODULE swap
TITLE ‘Bus Swap‘

// inputs
a35..a0 pin; “A bus
b35..b0 pin; “B bus

// outputs
out1 pin istype’com’;
out2 pin istype ‘com’;

// variables
a_bus = [a35..a0];
b_bus = [b35..b0];

equations
out1 = a_bus == 24;
out2 = b_bus == 24;

test_vectors ([a_bus, b_bus] -> [out1, out2]);
[20 , 20] -> [0 , 0];
[24 , 24] -> [1 , 1];

END

Header

Declarations

Logic Descriptions

Test Vectors

End Statement
XAPP075 January, 1997 (Version 1.0) 2-41

Using ABEL with Xilinx CPLDs
The Header Section
The module name is specified by the keyword Module. An
optional Title may also be used after the module name to
further describe the design. The double quote or the double
slash can also be used to add comments. At the end of
each module definition the keyword End is used to specify
the end of the design.

For example:

MODULE mydesign

TITLE ‘version 1 of mydesign’
“Additionally, comments can be added using
“the double quote
// or the double slash

END

The Declarations Section
Declarations are used to define constants, signals, and
sets, and to pass property statements to the fitter for con-
trolling device specific features which are not directly sup-
ported by ABEL. The various elements contained in the
Declaration section are:

• Constants — Constants are declared by assigning a
value to a constant name.

• Input pins — specified with the pin keyword without
types.

• Output pins — specified by the pin keyword and either
registered or combinatorial by using the istype
keyword.

• Nodes or buried logic — specified by the node keyword
and can be either registered or combinatorial by using
the istype keyword.

• Arrays of signals — declared by ending the signal name
with a number and using the double period (..) syntax.

• Sets — declared to make the ABEL code easier to read
and write by replacing long redundant signals with a
single reference. In addition, higher level operations
performed on sets allow very powerful and complex
designs to be specified very quickly.

For example:

“Declaring constants
On = 1;
Off = 0;

“Declaring input pins
my_input, my_clk pin;

“Declaring output pins
my_combinatorial_output pin istype ‘com’;
my_registered_ouput pin istype ‘reg’;

“Declaring nodes

my_combinatorial_node node isypte ‘com’;
my_registered_node node istype ‘reg’;

“Declaring a 5-bit array of nodes
Count4..Count0 node istype ‘reg’;

“Declaring a set to reference all 5-bits
Counter = [Count4..Count0];

“Property statements
xepld PROPERTY ‘fast on’;“Sets all outputs

“to fast slew.

Note that in the declarations section, the order in which
constants and sets are defined is important. If constant X is
defined with constant Y, for example, then constant Y must
be defined first.

The Logic Description Section
The logic description section specifies the functions of the
design. This can be done in three ways: Equations, Truth
Tables, and State Diagrams. Equations are useful for
designs with regular patterns such as counters or multi-
plexors. Truth Tables are a good entry method for designs
that do not have regular patterns, such as a 7-segment
LED decoder. State Diagrams are useful for specifying
designs with complex state machines.

Following the Declarations section, the design section is
delimited by using the keyword Equations , Truth_Table , or
State_Diagram. State_diagrams and truth tables using
sequential logic will need an accompanying equations sec-
tion to define clock signals as well. These keywords must
be used when switching between the three design meth-
ods.

Equations

Equation design entry primarily consists of assignment
statements. These can be combinatorial assignments (=),
or registered assignments using the delay operator (:=). All
registered equations using the delay operator (:=) will
behave as being implemented as an edge triggered flip-
flop. Therefore, they must also have a clock associated with
the signal name. This is done by using the .clk dot exten-
sion.

For example:

my_registered_node := my_input;
my_registered_node.clk = my_clk;

This is logically equivalent to describing the same logic with
detailed dot extensions as follows.

my_registered_node.d = my_input;
my_registered_node.clk = my_clk;

Using equations to specify a design is similar to program-
ming in other languages, except the context of the equa-
tions are evaluated in parallel rather than sequentially. In
2-42 XAPP075 January, 1997 (Version 1.0)

2

the following example, the order in which the equations are
written is only important in programming languages.

In ABEL, all of the equations are evaluated concurrently,
thus, the order in which they are presented is not important.

For example, in a normal programming language such as
C, the code:

x = x + 1;
total = total +x;

is not the same as

total = total + x;
x = x+1;

However, in ABEL

x := x+1;
total := total + x;

is the same as

total := total + x;
x := x + 1;

In order to process information sequentially in digital logic,
registers are used. In the previous example, note that the
assignments are made with a “:=” . This means that in order
for x or total to actually change values, a rising edge clock
signal must be received by the register. The implementa-
tion for this design would look something like the following
(line numbers are added to accompany the following expla-
nation):

1 MODULE example1
2
3 my_clock pin;
4 x7..x0 node istype 'reg';
5 total7..total0 pin istype 'reg';
6
7 x = [x7..x0];
8 total = [total7..total0];
9
10 @carry 4;“Limit the carry chain to

 “4-bits
11
12 EQUATIONS“Signals the beginning of

“an equation section
13 [x, total].clk = my_clock;
 “ Set the clock signals for
 “ registers to my_clock
14
15 x := x+1; “This will implement an
 “counter counting by 1
16 total := total + x;
 “Note this is an adder that
 “uses the @carry directive
 “to implement the 8 bit
 “adder with two 4-bit adders
17
18 TEST_VECTORS ([my_clock] -> [x, total])

19
20 [.C.] -> [1 , 0];
21 [.C.] -> [2 , 1];
22 [.C.] -> [3 , 3];
23 [.C.] -> [4 , 6];
24 [.C.] -> [5 , 10];
25 [.C.] -> [6 , 15];
26 [.C.] -> [7 , 21];
27
28 END

The beginning of this design (as for all ABEL designs)
defines the module name. Following the module name are
the declarations of the module. On line 3, the clock input is
defined. On line 4, the nodes that will contain the informa-
tion for x are declared as an 8-bit register. Line 5 declares
the output pins for total , an 8-bit register. On line 7 and 8,
the 8 bits are renamed to a single variable name, allowing
the equations to be written quickly and clearly. Line 10 is an
ABEL compiler directive which limits the lookahead carry
chain of the adder to 4 bits. On line 12, the EQUATIONS
keyword signifies the end of the Declarations section and
the beginning of the logic descriptions.

Every register must have a clock associated with it and in
this design, line 13 specifies that the x and total registers
are clocked by the input myclock . The actual logic assign-
ments on lines 15 and 16 determine how the registers are
affected when myclock goes high. At the rising clock edge,
x (after clock) will get the value of x (before clock) + 1, and
total (after clock) will get the value of total (before clock) +
x (before clock). Figure 2 shows a block diagram of the cir-
cuit described by this code.

Figure 2: Block Diagram

>

>

Incrementer

Adder

X7..X0

total7..total0

1

my_clock
XAPP075 January, 1997 (Version 1.0) 2-43

Using ABEL with Xilinx CPLDs
Test Vectors
Test vectors are also included at the end of this design.
These test vectors show the expected values of the output
for each rising clock signal, and are extremely useful for
verifying the design. Test vectors are also included in the
JEDEC programming file which can be used in the XC9500
family to perform an INTEST operation through the JTAG
port.

Dot Extensions

Dot extensions, illustrated in Figure 3, give more control
over the implementation of the design. Dot extensions such
as .AP or .AR are used to specify asynchronous preset and
asynchronous reset for flip-flops. Other common dot exten-
sions are .OE used to specify the output enable, and .PIN
used with bi-directional signals. For a complete set of sup-
ported dot extensions, please refer to the documentation
for the particular version of ABEL being used.

Figure 3: Directly Supported ABEL Dot Extensions

Logical Operators

Logical operators allow the user to manipulate signals logi-
cally and can be applied to both signals and sets. When
applied to sets, they are applied bitwise, and the sets must
be the same size.

The operators are shown in Table 1.

Arithmetic Operators

Arithmetic and relational operators can be used on sets to
quickly generate adders, counters, and comparators. Large
arithmetic functions, such as adders and magnitude com-
parators, will generate very wide equations to implement
the carry look ahead signals. In order to control the width of
these lookahead carry equations, the compiler directive,
@carry , can be used. For example, @carry 4 , would limit
the carry chain to 4-bits. An 8-bit adder therefore, would be
implemented as two 4 bit adders. Each adder would per-
form the carry lookahead in parallel for its own four bits.
However, a carry signal will be generated by the lower four
bits that will be cascaded to the higher order adder. Typi-
cally, carry chain lengths of 3 or 4 is a good trade-off
between speed and density.

Relational Operators

Relational operators are also used for generating the bool-
ean result for conditional equations. These are useful for
making the comparisons used in address decoding. Rela-
tional operators are used in conjunction with the conditional
equation, when...then...else statement. Using conditional
equations simplifies the task of building components with
control signals.

For example, using operators:

“Using the logical OR operator.
my_reg_output := my_input # my_reg_node;
my_reg_output.clk = my_clock;

“Using the arithmetic operator
sum := a + b;
sum.clk = my_clock;

“Using the relational operators with
“conditional equations
WHEN (a != b) THEN
 c := my_input;
ELSE
 c := my_reg_node;
c.clk = my_clock;

Conditional equations allow the designer to make certain
assignments depending upon the result of a relational
operator. In the previous example, c is assigned my_input
if a did not equal b. Otherwise, c will be assigned to the
value stored in my_registered_node . Multiple assign-
ments are made by containing them within the {} symbols.

The else statement does not need to be included in every
conditional equation. When there are multiple conditions,
they can be specified one at a time, however, make sure all
possibilities are covered, otherwise unexpected behavior
may occur in the design. For example:

“Using multiple WHEN without ELSE
“statements, the description of a mux
“is done by conditionally setting Output
“to Data_A or Data_B. Note the {} are used
“to make multiple assignments for each
“conditional.
Output2.clk = myclock;
WHEN (select == 0) THEN
{Output = Data_A;
Output2 := ValueA;}
WHEN (select == 1) THEN
{Output = Data_B;
 Output2 := ValueB;}
WHEN (select == 2) THEN
{Output = Data_C;
 Output2 := ValueC;}
“Note, select may also equal 3 and not
“defining the behavior for 3 will make
“the condition a don’t care.

D/T Q

R

S

>

.OE
.AP

.D or .T

.CLK

.AR
.Q or .FB

.PIN
2-44 XAPP075 January, 1997 (Version 1.0)

2

Table 1: ABEL Operators

Using Truth Tables
Truth table design entry consists of specifying the input sig-
nals and the responding output signals, which can be reg-
istered or combinatorial. Truth tables are handy when
specifying designs with irregular patterns, such as a 7-seg-
ment LED decoder.

A truth table starts with a header specifying all of the input
and output signals. A transition specified with the -> syntax
is a combinatorial transition, while a :> specifies a regis-
tered transition. Registered truth tables must also include a
clock equation to specify the clock input to the register. For
example:

“Syntax for defining a truth table
TRUTH_TABLE ([my_input] ->
[my_combinatorial output] :>
[my_registered_output])

“A mux described with a truth table

EQUATIONS “Note that we define the clock
 “with an equation first.
Output.clk = my_clock;

“Then, we specify the truth table input
“and outputs.
TRUTH_TABLE
([select]:> [Output])
 [0] :> [Data_A];
“If select is 0,then Output gets Data_A
 [1] :> [Data_B];
“If select is 1, then Output gets Data_B

Entering Test Vectors
Test vectors can optionally be added to perform a functional
test of the logic descriptions. For the XC9500 family, they
are included in the JEDEC file which can also be used with
the JTAG INTEST feature to test the functionality of the
physical device in the system.

The TEST_VECTORS keyword signifies the end of the pre-
vious section and the start of the test vectors that are used
to functionally simulate the design. Test vectors are entered

in the same format as truth tables, and special signals are
defined to help make the process easier. The three most
common are .C. , .Z., and .X.. The .C. signal represents a
clock that starts from a logical low, goes to a logical high,
and returns to a logical low. This is more convenient than
entering three test vectors for each clock pulse. The .Z. is
used to represent signals that are 3-stated, and the .X. sig-
nal represents a don’t care signal. Don’t care signals can
be used both for inputs and outputs.

Using State Diagrams
State diagrams tend to produce very legible and easy to
maintain code. The following steps are used in creating a
design using state diagrams.

1. Declare the state bits.

2. Declare a name for the set of state bits.

3. Assign a value for each state.

4. Define the state machine clock signals with equations.

5. Define the state transitions using the name defined in
step 2.

Declaring state bits, and defining how each state is repre-
sented by those state bits is done by using the sets and
constant declarations presented earlier. After defining the
state bits and states, an equations section is needed to
specify clock signals and other control logic. Using the
STATE_DIAGRAM keyword, the designer can now specify
assignments and state transitions for each of those states.
To specify an unconditional state transition, use the GOTO
statement. For conditional transitions, use the IF...THEN...
ELSE statement. Note that this is different from the
WHEN...THEN...ELSE used in the equations section.

For example:

module traf

title ‘Traffic Light Controler’

“ A controller is needed to control the
“ timing of a traffic light.

Logical Arithmetic Relational

& AND - Twos complement == Equal

OR A-B Subtraction != Not equal

! NOT A+B Addition < Less than

$ XOR << Shift left <= Less than or equal

>> Shift right > Greater than

>= Greater than or equal
XAPP075 January, 1997 (Version 1.0) 2-45

Using ABEL with Xilinx CPLDs
“ The green light should be lit for thirty
“ seconds. Then a yellow light for two
“ seconds, and a red light for
“ thirty seconds We then repeat the entire
“ cycle. This design must run on a clock
“ which has a period of 1 sec.

“clock in with a period of 1 second.
clk pin;

“reset to determine initial state.
reset pin;

“Declare some nodes for a counter.
Count4..Count0 node istype ‘reg’;
Counter = [Count4..Count0];

“Step 1. Declare the state bits.
“These bits are also our outputs
“in this example...
red pin istype ‘reg’;
yellow pin istype ‘reg’;
green pin istype ‘reg’;

“Step 2. Declare a name for the set of
“state bits.
“Step 3. Assign a unique value for the
“for each state.
Light = [green, yellow, red];
GO = [1, 0, 0];
CAUTION = [0, 1, 0];
STOP = [0, 0, 1];

Equations
“Step 4. Set up the clock and reset lines
“for the state machine.
green.ap = reset;
red.ar = reset;
yellow.ar = reset;
Counter.ar = reset;
Counter.clk = clk;
[green, yellow, red].clk = clk;

“Step 5. Define the state transitions
“using the name defined in step 2.

State_Diagram Light

state GO:
IF (Counter < 30) then GO with
 Counter := Counter + 1;
ELSE goto CAUTION with
 Counter := Counter + 1;

state CAUTION:
IF (Counter != 0) then CAUTION with

 Counter := Counter + 1;
ELSE goto STOP with
 Counter := Counter + 1;

state STOP:
IF (Counter < 30) then STOP with
 Counter := Counter + 1;
ELSE goto GO with
 Counter := 1;

test_vectors
([clk,reset] -> [red, yellow, green])

[0,1] -> [0,0,1];

[.c., 0] -> [0,0,1];
@repeat 29
 {[.c., 0] -> [0,0,1];}

[.c., 0] -> [0,1,0];
[.c., 0] -> [0,1,0];

[.c., 0] -> [1,0,0];
@repeat 29
 {[.c., 0] -> [1,0,0];}

[.c., 0] -> [0,0,1];
@repeat 29
 {[.c., 0] -> [0,0,1];}

 [.c., 0] -> [0,1,0];
 [.c., 0] -> [0,1,0];

[.c., 0] -> [1,0,0];
@repeat 29
 {[.c., 0] -> [1,0,0];}

end

Assignments can be made for state diagrams in two ways.
If the assignment is made combinatorially in the state, then
the outputs will be decoded from the state bits. This will
improve the density of the final design, however it will add
some delay. As shown in Figure 4, decoding from the
present state adds a level of logic to achieve the desired
output. For example:

zero_state:
output1 = 0;
GOTO one_state;

one_state:
output1 = 1;
GOTO zero_state;
2-46 XAPP075 January, 1997 (Version 1.0)

2

Figure 4: Decoding Present State

If the signal is declared as a register type, then while the
next state is determined, the output is decoded at the same
time, and will transition at the next clock edge. This imple-
mentation is shown in Figure 5. To implement this in ABEL,
we use the with statement in our state diagram.

For example:

zero_state :
GOTO one_state
with output1 := 1;

one_state :
GOTO zero_state
with output1 := 0;

Figure 5: Decoding Next State

Using Property Statements
Although ABEL was initially developed for PLDs, there are
still device-specific features that ABEL does not support
directly. Instead, ABEL provides a property statement
allowing device specific commands to be passed to the fit-
ter software. Property statements must be placed in the
declarations section. These property statements allow the
user to control the following:

• Slew rates
• Logic optimizations
• Logic placement
• Power settings
• Preload values

fast
The fast property controls the output slew rate, and there
can only be one fast property used in each design. If there
are only a few signals that require a fast slew rate, they can
be listed individually after the property, and the remaining
signals will be slew rate limited. Or, if there are only a few
signals that need to be slew rate limited, then those signals
can be listed.

xepld property ‘fast on’;
“all pins have fast slew rate

xepld property ‘fast on x1 x2’;
“ only x1 and x2 are fast
“ the remaining pins are slew limited

xepld property ‘fast off x1 x2’;
“only x1 and x2 are slew limited
“the remaining pins are fast

logic_opt
The logic_opt property allows the user to control the logic
optimization done by the fitter. This should be used on
selective nodes, where collapsing those nodes would
cause the design to become very large.

xepld property ‘logic_opt off’;
“Preserves all combinatorial nodes

xepld property ‘logic_opt off x1’;
“preserve x1 and collapse other nodes to
fitter limits

minimize
The minimize property is used to prevent boolean minimi-
zation on equations, and is primarily used to prevent
removal of redundant product terms in combinatorial logic.

xepld property ‘minimize off x1 x2’;
“keep redundant product terms for x1 & x2

partition
The partition property is used when specific placement of
logic is desired.

xepld property ‘partition fb1 x1 x2’;
“place the functions of x1 and x2 in
“function block 1

xepld property ‘partition fb1_2 x1’;
“place the function x1 in
“function block 1, macrocell 2

pwr
The pwr property controls the power settings for individual
macrocells.

Output
Decode

Next State
Decode D Q

>

Address
!ads

Signal

State
Bits

Output decoder may minimize product term
requirement, but tCO is slower.

Next State
Decode D Q

>

Address
!ads

Signal

State
Bits

Next State
Decode

Output
Decode D Q

>

Duplication of the next state decoder may increase
product term count, but tCO is faster.
XAPP075 January, 1997 (Version 1.0) 2-47

Using ABEL with Xilinx CPLDs
xepld property ‘pwr low’;
“places all macrocells in low power mode

xepld property ‘pwr low x1 x2’
“places x1 and x2 in low power mode
“the remaining in STD power mode

xepld property ‘pwr std x1 x2’
“places x1 and x2 in STD power mode
“the remaining in low power mode

.prld
The .prld property controls the initial state of the registers
at power up. Note that because this property is only passed
on and used by the fitter, and is not used by ABEL, the pre-
load value will not be reflected in test vectors. The default
preload value is 0 for all XC9500 registers. Therefore, only
registers that require a value of 1 need to be specified.

For example:

xepld property ‘equation x1.prld = VCC’;
“preload register x1 to a 1

DESIGN EXAMPLES
The following examples demonstrate some basic, specific
design principles.

Bi-Directional pins
This example shows how to implement a bi-directional sig-
nal in ABEL. Bi-directional signals are commonly found
whenever a bus is being used by several different devices.
This usually involves some kind of control signal to allow
only one device to drive the bus at a given time. In this
example, the input pin write is used to control if data is
being driven on to the data pins D7..D0 from an outside
source, such as a microprocessor, or if data is being driven
from the CPLD to be read from the data pins by an external
source

module bidi;

“This design will take a value from the
“pins D7..D0 and store it in a Register
“when the signal, write, is high. When
“write goes low, it will output the
“saved value at pins D7..D0

“inputs
write pin;
myclock pin;

“Bi-directional signal also has a register
“associated with it.
D7..D0 pin istype ‘reg’;

“Define my sets
Data = [D7..D0];

Equations;
Data.oe = !write; “3-State the data lines
 “when writing to register
Data.clk = myclock;

WHEN (write==1) THEN Data := Data.pin;
“When we are writing to the part, read the
“data pins and save in data register.
ELSE
Data := Data;
“Else, drive the data pins with the value
“saved in the register so we can read it
“back.
end;

Latches
Latches can be implemented in two ways. In the first exam-
ple, latch_output utilizes the asynchronous set and reset of
a flip-flop to implement a latch.

module ltest1

input,le pin;
latch_output pin istype ‘reg’;

equations

latch_output.ap = input & le;
latch_output.ar = !input & le;
latch_output.clk = 0; “Clock must be

“grounded
latch_output.d = 0; “D-input must be

“grounded

test_vectors ([input, le] ->
[latch_output])
 [0,0] -> [0];
 [1,0] -> [0];
 [0,1] -> [0];
 [1,1] -> [1];
 [1,0] -> [1];
 [0,1] -> [0];

end;

Latches can also be implemented combinatorially by using
a feedback path and providing a redundant product term to
cover glitches. This will require the following code:

MODULE comlatch;

le pin;
input pin;
latch_out pin istype ‘com,retain’;
2-48 XAPP075 January, 1997 (Version 1.0)

2

// The ABEL compiler will retain redundant
// logic for the latch_out output
// because they have the RETAIN attribute.
// However, the MINIMIZE OFF property
//statement is required to instruct the
// Xilinx fitter to also retain the
// redundant logic.

xepld property ‘minimize off latch_out’;
“ The fitter will retain redundant logic
“ for these nodes

EQUATIONS;

 latch_out = input & le
“ latch is transparent high

latch_out & !le
“ latch data on falling edge of le
latch_out & input;
“ Redundant product term

TEST_VECTORS
([le, input] -> [latch_out]);
 [1 , 0] -> [0]; “ transparent
 [1 , 1] -> [1]; “ transparent
 [0 , 1] -> [1]; “ latch a 1
 [0 , 0] -> [1]; “ change input
 [1 , 0] -> [0]; “ transparent
 [0 , 0] -> [0]; “ latch a 0
 [0 , 1] -> [0]; “ change data

END; “ All modules must have an END state-
ment

Counters
Counters are useful in a variety of applications, such as
memory interfaces, generating delay states, or simple state
machines. This example shows how to build a loadable up/
down counter with a count enable.

module counter

“32-bit Up/Down counter with parallel load
“and enable

“Outputs
Q31..Q0 pin istype ‘reg’;

“Inputs
D31..D0 pin;
Load pin; “ Load Cmd
Count_Enable pin; “ Count Cmd
UpDown pin; “ Up/Down Cmd
myclk pin; “ Clock

Counter = [Q31..Q0];
Input = [D31..D0];

Equations
@carry 4;
Counter.clk = myclk;
WHEN (!Load & Count_Enable & UpDown)
 THEN Counter := Counter + 1
else
WHEN (!Load & Count_Enable & !UpDown)
 THEN Counter := Counter - 1
else
WHEN (Load)
 THEN Counter := Input;
else
Counter := Counter
end;

Multiplexers
Multiplexers can be used to control the data flow of a
design. The following example demonstrates how to imple-
ment a 16 bit 4-1 registered multiplexer:

module mux2
A15..A0 pin; “ Inputs
B15..B0 pin; “ Inputs
C15..C0 pin; “ Inputs
D15..D0 pin; “ Inputs
Q15..Q0 pin istype ‘reg’; “ Output

Sel1..Sel0 pin;
clk pin;

Output = [Q20..Q0];
DataA = [A20..A0];
DataB = [B20..B0];
DataC = [C20..C0];
DataD = [D20..D0];
Select = [Sel1..Sel0];

Equations

Output.clk = clk;

WHEN Select == 0 THEN Output := DataA
else WHEN Select == 1 THEN Output := DataB
else WHEN Select == 2 THEN Output := DataC
else Output := DataD;

end

Conclusion
ABEL allows complex behavioral designs to be easily
implemented and simulated. In addition, the special fea-
tures and capabilities of the device are easily accessed
through ABEL property statements. ABEL is a simple yet
powerful software tool that provides the designer with an
efficient language for developing XC7300 and XC9500
designs.
XAPP075 January, 1997 (Version 1.0) 2-49

Using ABEL with Xilinx CPLDs
2-50 XAPP075 January, 1997 (Version 1.0)

	Introduction
	ABEL Language Structure
	The Header Section
	The Declarations Section
	The Logic Description Section
	Equations
	Test Vectors
	Dot Extensions
	Logical Operators
	Arithmetic Operators
	Relational Operators

	Using Truth Tables
	Entering Test Vectors

	Using State Diagrams
	Using Property Statements
	DESIGN EXAMPLES
	Conclusion

